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STABILITY OF A NONLINEARLY ELASTIC CYLINDER 
UNDER SIDE PRESSURE AND AXIAL COMPRESSION* 

G.I. VOLOKITIN 

There is considered the problem of loss of stability of thick-walled cylinders sub- 
jected to inhomogeneous initial stresses. The analysis is based on the exact three- 
dimensional equations of neutral equilibrium problems derived by superposing small 
on finite deformations. The law of the state is determined by a five-constant 
Murnaghan relationship. Cases are studied of the buckling of circular cylinderssub- 
jetted to axial load and side internal and external hydrostatic pressure. Results 
are represented for calculations exhibiting the influence of nonlinearity on the 
upper critical load as a function of the geometric parameters. 

There exists a comparatively small number of papers in which the stability of 
equilibrium is investigated on the basis of the three-dimensional equations of non- 
linear elasticity theory /l/. Results are obtained for bodies of simple shape (slab, 
rod, hollow sphere, cylindrical tube), in which most solutions relyonasimplifying 
hypothesis regarding the incompressibility of the material or an assumption regard- 
ing the simple form of the state function. Mainly cases of neo-Hookean and semi- 
linear materials are studied /2,3/. 

1. To investigate the stability of a nonlinearly elastic cylinder, we use the Lur'e 
neutral equilibrium equations /l/ 

v.0 = 0, 0 = T’ + TV.w _ VwT.T (1.1) 

~=R*=[++‘Iw)]~~, T'=[-$T(R+~w)]~~ 
Here Vis the nabla operator in the metric of the unperturbed state of strain, T is the 

Cauchy stress tensor, Ris the radius-vector of a point of the body in the state of strain. 
By using the vector of additional displacements nw(q is a small parameter), the particle 
location in equilibrium modes adjacent to the subcritical is taken into account. 

The five-constant Mumaghan dependence describes a broad class of isotropic nonlinearly 
elastic materials under moderate strains. For this state law the tensor 0 has the form /4/ 

@ = I,+ {I/g [--12h - 8p + Sv, + 18v, + +, + (4h- (1.2) 
6~1 - 8v,)I, + (~1 + 2v,)I,* - (4v, + 8v,)Z,lF.Vw -.- F.. 

Vw [(A - v,v, - 2v3F + (‘/,vl - 2v3)11P + (Y, _t 
2v,)F*l + (v* + 2v,)P . . VwF + lp - v*v* - 2v, -- 
(l/sv* + v3)111[F~.VW f F.(Vw + Vwr).F] + 
v,l, (2Vw.. EE - VwT)} 

Here F is the Finger measure of strain, I,,I,,I, 
Lam6 coefficients, vlrvZ,va 

are its principal invariantes, A., p are 
are third order elasticity constants, E is the unit tensor, and 

the superscript T denotes the transpose. 
If a load is applied to a body in the form of a uniformly distributed follower pressure, 

then the equilibrium equation for the additional strains is formulated on the surface in the 
form /l/ 

N.O=--p(V.wN- N.VwT) (1.3) 

Here p is the intensity of the pressure, N is the outer normal to the strained surface. 
Furthermore, this relationship is used in writing the boundary conditions on the outer and 
inner cylinder surfaces. Boundary conditions of a different kind are taken on the endfaces: 
for z=O and z=L 

i,.w=O, i,.O.e,=i,.O.e,=O (1.4) 
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The unit vector i, is colinear to the axis of the unstrained cylinder whose length is L. 
while the inner and outer radii are rl, ro . The coordinate axis z is directed along the axis 
of the cylindrical shell. The conditions on the endfaces (1.4) specify no friction and in- 
admissibility of the additional displacements in the axial direction. 

2. It is assumed that the subcritical strain of the cylinder is axisymmetric. By select- 
ing the cylindrical (r.q,z) coordinates which give the position of the pointintheun~eformed 
state as the material coordinates, we have for the coordinates of the deformed cylinder 

R = R (r), cp' = (r, 2' = 13.2, cL isconst (2.1) 

Such a deformed state occurs in a hollow circular cylinder under internal and external 
loading by hydrostatic pressure and compression from the endfaces by stiff smooth slabs. Con- 
dition (1.4) does not contradict such a loading. 

The function R(T) is determined as a result of solving the initialboundaryvalueproblem, 
the Lam& problem for a nonlinearly-elastic tube /l/ 

(SF' + $0,. - ay)= 0, c'r (r(l) = --Par cr @I) = --P1 (2.2) 

Here o,, aW are the physical components of the stress tensor, and pO,pl are the intensit- 
ies of the external and internal pressures. The primes denote differentiation with respect to 
the coordinate F. 

Expressions for the measure of the Finger strain and its principal invariants follow from 

12.1) 
F E VW = aze,e, + b%,e, + aai,i3 (2.3) 

I, = a2 $ b2$ a’, I, = a2b2 + az (a2 $ b2), I, = aabau2 
(a 0”) -== 1 -+- u’. b (r) -=: 1 + u/r) 

where P,., est. i, are the basis vectors which coincide with the unit vectors of a cylindrical co- 
ordinate system, and the functions a, 6 are related to the radial displacement u by the equa- 
tions presented above in parentheses. Using the known representation of the stress tensor in 
the Finger form, written with the Murnaghan relationship taken into account for the specific 
strain potential energy, we can give the components (T,, cy, (J; the form 

Za 
0, ;; z c(O) + &W + A$ t I 
erg =: 2b &) _ &W + $!_ 

oa i I 
[ p) 

0, = 2 c(O) _ a+(l) + a’ 3 
c(O) = 1116 19v, + 18v, -+ 8~~ - 4 (3h + 2p) + (4~ - 

6v,- 8v,) 1, -i- (~1 f 2~2) I,’ - (4~~ + 8v,) I,] 
c(l) = ‘I* 13% + 4v3 - 2p - (v* + 2v*) I,] 
c -1 = ljpv3 I, 

(2.4) 

The relationships (2.2)- (2.4) show that the boundary value problem determining the sub- 
critical strain of the cylinder is nonlinear. In seeking its solution we must be constrained 
to approximate methods. For shells with small relative thickness the formulafromlineartheory 
is completely acceptable 

Such an approach, when the subcritical strains are determined by linear elasticity rela- 
tionship in the formulation of the neutral equilibrium equations, has been developed suffic- 

iently extensively. However, for thick-walled shells more exact expressions taking accountof 
nonlinearity are of interest. In this case, a variation of the adjustment method describedin 
/!i/ was used to solve the initial boundary value problem (2.2) for cylinderswiththe relative 
thickness E = 3 (7" -- rx)l(ro + rt) > 0.05 

It is convenient to take the solution of the Lam& problem for a cylinder of a semilinear 
material as the approximationinthe first stage. The selection of the initial approximation 
by formulas from linear elasticity theory does not always assure convergence. 

The cylinder loading in the axial direction is realized both because of the change in 

distance between the endfaces and because of the side pressure. Theaxialforce Q is computed 

from the formula /l/ 
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Let us turn to an examination of the intermediate equilibrium conditions. We give the 

vector of the additional displacement in a form allowing nonsymmetric buckling modes 

TV = u fr, 9, 2) e, i v (r, cp, 2) eT i- w (r, tp z) i, (2.6) 

Substituting U.2), (2.3), (2.6) into (l.l), and using the derivational formulas, we ar- 
rive at a system of differential equations describing the equilibrium in the bulk 

The components of the additional displacement vector on the inner and outer cylinder sur- 
faces are related by the conditions: for r = rl and r = r. 

AI=-p[+(z,++)+$$], &=$$f+), CT&$ (2.8) 

where p =pI if r=rt, and p=po if r = rw 
We seek the solution of the system (2.7) and (2.8) in the form 

a = X,, (r) cos ncp co3 h,.z 
0 = Y,, (r) sin 7z.q cos A.,2 
W = Znz,, (r) cos ncp sin h,z 
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Here n,?+,, are the wave-form parameters: h, is determined by h, == am/L 
with the boundary conditions on the endfaces (1.4) 

in conformity 
, and the numbers n and mare integers. After 

separation of variables, the problem of bifurcation of the axisymmetric equilibrium of a non- 
linearly elastic cylinder (Z-7), (2.8) results in a homogeneous system of ordinary differen- 
tial equations 

and six boundary conditions: for r = rl and r = r0 

(2.101 

The critical quantities pO, p1 and a are determined by the eigenvaluesoftheproblem (2.91, 
(2.10). In connection with the nonlinearity of the eigenvalue problem under consideration, 
numerical methods were used /4/. The algorithm to determine the bifurcation loads, includ- 
ing the solution of the boundary value problem of subcritical deformation and the evaluation 
of the eigenvalues of the system (2.9) and (2.10), is realized on an electronic computer. 

3. Computations were executed in an example of a material whose elastic properties are 
described by the constants /4/: Y = 0.272, E= 2.10" N/m2, v,iE = -2.8, vaIE = -2.1, v,/E = -1 (v is 
the Poisson's ratio and E is Young's modulus). In order to clarify the influence of the non- 
linearity the fundamental cases of loss of stability of circular cylinders, studied in shell 
theory /6/, were examined. 

For very long shells under external pressure, the critical load was sought in the form 
p0 =r p,Ee". Numerical analysis showed that wave formation with IS= 2, 7~ = 0 (plane buckling 
modes) correspond to the critical (minimal) value of the parameter P*. Forthin-walledshells 
(F 7 0.01) the p* agrees with the classical value determined by the Grashoff-Bresse formula /6/. 
Critical. values of p*,109 are compared below for the following versions: l)~,==~~=~~r.O,the 

initial problem is linear; 2) vl= Q==Y~= 0, the initial problem is nonlinear; 31 v,= -2.8E, 
Y%= -~.IE, vg= --E, the initial problem is linear, 4) the constants VI,V~,V, are nonzeroandthe 
initial problem is nonlinear 

Additional axial compression results in a certain increase in the critical values of the 
parameter p*. 

For shells of medium length, the critical load was sought in the form p0 = p*E&* in 
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conformity with the Southwell-Papkovich formula. Let us present the values of p*.lOs cor- 
responding to the case a = 1, v1 = vp = vI) = 0, rO/ L = 0.382, m = 1 

e 0.00: 0.005 0.01 0.04 0.08 0.2 0.333 

,'*%I~ 27 23 3;0 3;s 3& 420 
2 

447 
I'.[ ‘18 348 358 362 395 427 452 502 

The last row contains the value of p*AOs for the variant in which the displacements of 
the subcritical state are found by linear theory. Taking account of the third order constants 
?. v,, vg results in a certain increase in pa (by 10 - 15% for thick-walled cylinders). The 
addition of an axial load contributes to a reduction in the critical pressure. 

I Longcylindera 

I ill= 1, n=l 

e 0.0122 

&n 0.08 

a) 997 
3.2 

0.1 0.333 0.0122 

0.2 0.4 16.53 

b) 997 
3.2 

980 918 
20 68 

986 933 
16 23 

c) 996 985 926 
3.3 18 29 

r 1 
Table1 

Uediumlengthcylindea Shortcylinden 
m=l, n=O m=l. n=O 

993 
7.3 

993 
7.3 

993 
7.3 

0.1 0.333 

5,774 4.082 

938 - 
59 - 

944 52 E 

964 730 
47 340 

0.0122 0.1 0.333 

30 10 6 

987 917 700 
12.6 90 142 

986 9f2 641 
12.6 73 162 

986 867 56!1 
12.6 191 5no 

Table 1 yields a representation of the influence of the physical and geometric nonlinear- 
ities on the magnitude of the upper critical force for the longitudinal compression for long, 
medium, and short cylinders. The pairs of numbers in the cells of this table are the critical 
values of the elongation parameter a.lOS (first row) and the axial compressive stress 0 .I03 
(second row). Data are presented for the cases: a) initial displacements are found by the 
formula (2.5), the third order constants are not taken into account; b) the initial displace- 
ments are determined more exactly from (2.1)- (2.31, where v,= yl= vQ= 0; c) the third order 
constants are not zero, and the initial problem is nonlinear. In all the cases considered 
here the effect due to the addition of external pressure is identical, the critical compres- 
sion force is raised. 

As a last example we present the results for a cylinder loaded from within and from out- 
side by identical pressure (po=pJ. The cylinder length remains unchanged (a= 1). By verify- 
ing the possibility of buckling in three-dimensional modes due to side pressure'only, we seek 
the critical load in the form po= pl= p,Ee. Considering comparatively thin-walled cylinders, 
we omit the moduli v~,v~,v~, and find the initial displacements by linear theory: 

Table 2 

Table 2 contains the bifurcation values of the parameter p. (the axial stresses are com- 
puted by the formula 1 oz,p I= 2vp.E~). It is seen that the wave formation over the length corres- 
ponds to critical forces of medium length shells under longitudinal compression. These forces 
are themselves determined by the Lorentz-Timoshenko formula 

(r, = 13 (1 - v’)]-“‘Ee =. 0.6Ee 

By analyzing the results of the computation, the deduction can be made that Iu~,~I>cJ~. 
The results presented below for the case E = O.O122,n= 0 show that numbers n,m exist for 

shells of given length, to which the least load will correspond as follows 



224 G.I. Volokitin 

Values of pI for n= 1 and n= 2 are omitted here, which exceed the value of p* for II = 0. 
The example shows that a nonlinearly elastic cylinder between fixed slabs can become unstable 
due to a follower hydrostatic pressure acting on the inner and outer side surface. This result 
characterizes the non-trivial distinction between compressible and incompressible nonlinearly 
elastic solids. Such cases of loss of stability are impossible in the latter circumstances 

/I/. 

The author is grateful to L.M. Zubov for attention to the research. 
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